VIP modulates neuronal nicotinic acetylcholine receptor function by a cyclic AMP-dependent mechanism.
نویسندگان
چکیده
Neuronal nicotinic ACh receptors (AChRs) mediate synaptic transmission throughout the nervous system, and are regulated by cellular processes and interactions that include second messenger signaling pathways. In the case of chick ciliary ganglion neurons, activation of the cAMP-dependent signaling pathway with cAMP analogs enhances ACh sensitivity in a manner consistent with an increase in the number of functional nicotinic receptors. We have now identified vasoactive intestinal peptide (VIP) as a neuromodulator or "first messenger" in the cAMP-mediated pathway that regulates neuronal AChRs. Using cAMP imaging and biochemical detection assays, we find that bath application of VIP elevates intracellular cAMP in freshly isolated ciliary ganglion neurons within minutes. The VIP treatment also enhances neuronal ACh sensitivity assessed with whole-cell recording. The enhanced ACh sensitivity produced by VIP appears with a short latency, similar to that associated with the increase in cAMP, and is not additive with the enhanced ACh sensitivity produced by bath application of a cAMP analog. In contrast, calcitonin gene-related peptide (CGRP), known to regulate muscle nicotinic AChRs via a cAMP-dependent pathway, has no detectable effect on levels of either cAMP or ACh sensitivity in the neurons. The results indicate that VIP enhances the ACh sensitivity of ciliary ganglion neurons via a cAMP-dependent signaling pathway, presumably by interaction with a specific receptor. Since VIP-like immunoreactivity is present in the presynaptic nerve terminals of avian ciliary ganglia, a VIP-like peptide could modulate AChRs in vivo.
منابع مشابه
Cyclic AMP-dependent mechanism regulates acetylcholine receptor function on bovine adrenal chromaffin cells and discriminates between new and old receptors
Bovine adrenal chromaffin cells have nicotinic acetylcholine receptors (AChRs) that mediate release of catecholamines from the cells in response to synaptic input, and resemble neuronal AChRs in pharmacology and antigenic profile. Results presented here show that a cAMP-dependent process enhances the function of adrenal chromaffin AChRs as a population in the plasma membrane. This was demonstra...
متن کاملIn GH3 pituitary cells, acetylcholine and vasoactive intestinal peptide antagonistically modulate adenylate cyclase, cyclic AMP content, and prolactin secretion.
In GH3 pituitary cell homogenates, acetylcholine (ACh) (IC50 200 nM) inhibits adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity in a concentration- and GTP-dependent manner. Maximal inhibition was obtained with 10 microM ACh and corresponded to approximately a 50% decrease in basal enzyme activity. ACh inhibition is antagonized by atropine and is mimicked by muscarini...
متن کاملCyclic AMP-dependent phosphorylation of a neuronal acetylcholine receptor alpha-type subunit.
Chick ciliary ganglion neurons have nicotinic acetylcholine receptors (AChRs) that mediate synaptic transmission through the ganglion. A cAMP-dependent process has previously been shown to enhance the ACh response of the neurons 2- to 3-fold without requiring the synthesis of new receptors. We show here that the receptors can be phosphorylated in situ by a cAMP-dependent process. The phosphoryl...
متن کاملMultiple Kinases Involved in the Nicotinic Modulation of Gamma Oscillations in the Rat Hippocampal CA3 Area
Neuronal synchronization at gamma band frequency (20-80 Hz, γ oscillations) is closely associated with higher brain function, such as learning, memory and attention. Nicotinic acetylcholine receptors (nAChRs) are highly expressed in the hippocampus, and modulate hippocampal γ oscillations, but the intracellular mechanism underlying such modulation remains elusive. We explored multiple kinases b...
متن کاملThe Effect of Swimming Endurance Exercise on Cell Death and Nicotinic Acetylcholine Receptor Gene Expression in Brain of Rat: An Experimental Study of Alzheimer's Disease Model
Background and Objectives: Alzheimerchr('39')s disease (AD) is a neurodegenerative disease which is marked by impaired cholinergic function and decreased nicotinic acetylcholine receptor (nAChRs) density. nAChRs are important mediators of cholinergic signaling in modulation of learning and memory function. In Alzheimer hippocampus is particularly vulnerable to specific degenerative processes an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 6 شماره
صفحات -
تاریخ انتشار 1994